Category Archives: 3D

Neural JNack has entered the chat… 🤖

Last year my friend Bilawal Singh Sidhu, a PM driving 3D experiences for Google Maps/Earth, created an amazing 3D render (also available in galactic core form) of me sitting atop the Trona Pinnacles. At that time he used “traditional” photogrammetry techniques (kind of a funny thing to say about an emerging field that remains new to the world), and this year he tried processing the same footage (comprised of a couple simple orbits from my drone) using new Neural Radiance Field (“NeRF”) tech:

For comparison, here’s the 3D model generated via the photogrammetry approach:

The file is big enough that I’ve had some trouble loading it on my iPhone. If that affects you as well, check out this quick screen recording:

Adobe 3D Design is looking for 2023 interns

These sound like great gigs!

The 3D and Immersive Design Team at Adobe is looking for a design intern who will help envision and build the future of Adobe’s 3D and MR creative tools.

With the Adobe Substance 3D Collection and Adobe Aero, we’re making big moves in 3D, but it is still early days! This is a huge opportunity space to shape the future of 3D and AR at Adobe. We believe that tools shape our world, and by building the tools that power 3D creativity we can have an outsized impact on our world.

Blender + Stable Diffusion = 🪄

Easy placement/movement of 3D primitives -> realistic/illustrative rendering has long struck me as extremely promising. Using tech like StyleGAN to render from 3D can produce interesting results, but it’s been difficult to bring the level of quality & consistency up to what Adobe users demand.

Now with Stable Diffusion (and, one hopes, other diffusion models in the future) attached to Blender (and, one hopes, other object manipulation tools), the vision is getting closer to reality:

Check out NeRF Studio & some eye-popping results

The power & immersiveness of rendering 3D from images is growing at an extraordinary rate. NeRF Studio promises to make creation much more approachable:

The kind of results one can generate from just a series of photos or video frames is truly bonkers:

Here’s a tutorial on how to use it:

NVIDIA’s GET3D promises text-to-model generation

Depending on how well it works, tech like this could be the greatest unlock in 3D creation the world has ever known.

The company blog post features interesting, promising details:

Though quicker than manual methods, prior 3D generative AI models were limited in the level of detail they could produce. Even recent inverse rendering methods can only generate 3D objects based on 2D images taken from various angles, requiring developers to build one 3D shape at a time.

GET3D can instead churn out some 20 shapes a second when running inference on a single NVIDIA GPU — working like a generative adversarial network for 2D images, while generating 3D objects. […]

GET3D gets its name from its ability to Generate Explicit Textured 3D meshes — meaning that the shapes it creates are in the form of a triangle mesh, like a papier-mâché model, covered with a textured material. This lets users easily import the objects into game engines, 3D modelers and film renderers — and edit them.

See also Dream Fields (mentioned previously) from Google:

Google & NASA bring 3D to search

Great to see my old teammates (with whom I was working to enable cloud-rendered as well as locally rendered 3D experiences) continuing their work.

NASA and Google Arts & Culture have partnered to bring more than 60 3D models of planets, moons and NASA spacecraft to Google Search. When you use Google Search to learn about these topics, just click on the View in 3D button to understand the different elements of what you’re looking at even better. These 3D annotations will also be available for cells, biological concepts (like skeletal systems), and other educational models on Search.

“Curt Skelton,” homebrew AI influencer

[Update: Seems that much of this may be fake. :-\ Still, the fact that it’s remotely plausible is nuts!]

Good lord (and poor Conan!). This creator used:

  • DALL•E to create hundreds of similar-looking images of a face
  • Create Skeleton to convert them into a 3D model
  • DeepMotion.com to generate 3D body animation
  • Deepfake Lab to generate facial animation
  • Audio tools to deepen & distort her voice, creating a new one
@curt.skelton

♬ Mr. Roboto – Live – Styx

A really amazing spin on AR furniture shopping

After seeing years & years of AR demos featuring the placement of furniture, I once heard someone say in exasperation, “Bro… how much furniture do you think I buy?”

Happily here’s a decidedly fresh approach, surrounding the user & some real-world furniture with a projection of the person’s 3D-scanned home. Wild!

Now, how easy can 3D home scanning be made—and how much do people care about this kind of scenario? I don’t know, but I love what the tech can enable already.

Snap Research promises 3D creation from photo collections

Hmm—this is no doubt brilliant tech, and I’d like to learn more, but I wonder about the Venn diagram between “Objects that people want in 3D,” “Objects for which a sufficiently large number of good images exist,” and “Objects for which good human-made 3D models don’t already exist.” In my experience photogrammetry is most relevant for making models from extremely specific subjects (e.g. a particular apartment) rather than from common objects that are likely to exist on Sketchfab et al. It’s entirely possible I’m missing a nuanced application here, though. As I say, cool tech!

Google Maps rolls out photorealistic aerial views

Awesome work from my friend Bilawal Sidhu & team:

[W]e’re bringing photorealistic aerial views of nearly 100 of the world’s most popular landmarks in cities like Barcelona, London, New York, San Francisco and Tokyo right to Google Maps. This is the first step toward launching immersive view — an experience that pairs AI with billions of high definition Street View, satellite and aerial imagery.

Say you’re planning a trip to New York. With this update, you can get a sense for what the Empire State Building is like up close so you can decide whether or not you want to add it to your trip itinerary. To see an aerial view wherever they’re available, search for a landmark in Google Maps and head to the Photos section.

Adobe Substance 3D is Hiring

Check out the site to see details & beautiful art—but at a glance here are the roles:

Capturing Reality With Machine Learning: A NeRF 3D Scan Compilation

Check out this high-speed overview of recent magic courtesy of my friend Bilawal:

Photogrammetry is an art form that has been around for decades, but it’s never looked better thanks to ML techniques like Neural Radiance Fields (NeRF). This video shows a wide range of 3D captures made using this technique. And I gotta say, NeRF really breathes new life into my old photo scans! All these datasets were posed in COLMAP and trained + rendered with NVIDIA’s free Instant NGP tools.

Substance for Unreal Engine 5

I’m no 3D artist (had I but world enough and time…), but I sure love their work & anything that makes it faster and easier. Perhaps my most obscure point of pride from my Photoshop years is that we added per-layer timestamps into PSD files, so that Pixar could more efficiently render content by noticing which layers had actually been modified.

Anyway, now that Adobe has made a much bigger bet on 3D tooling, it’s great to see new support for Substance Painter coming to Unreal Engine:

The Substance 3D plugin (BETA) enables the use of Substance materials directly in Unreal Engine 5 and Unreal Engine 4. Whether you are working on games, visualization and or deploying across mobile, desktop, or XR, Substance delivers a unique experience with optimized features for enhanced productivity.

Work faster, be more productive: Substance parameters allow for real-time material changes and texture updates.

Substance 3D for Unreal Engine 5 contains the plugin for Substance Engine.

Access over 1000 high-quality tweakable and export-ready 4K materials with presets on the Substance 3D Asset library. You can explore community-contributed assets in the community assets library.

The Substance Assets platform is a vast library containing high-quality PBR-ready Substance materials and is accessible directly in Unreal through the Substance plugin. These customizable Substance files can easily be adapted to a wide range of projects.

Adobe is acquiring BRIO XR

Exciting news!

Once the deal closes, BRIO XR will be joining an unparalleled community of engineers and product experts at Adobe – visionaries who are pushing the boundaries of what’s possible in 3D and immersive creation. Our BRIO XR team will contribute to Adobe’s Creative Cloud 3D authoring and experience design teams. Simply put, Adobe is the place to be, and in fact, it’s a place I’ve long set my sights on joining.  

Adobe demos new screen-to-AR shopping tech

Cool idea:

[Adobe] announced a tool that allows consumers to point their phone at a product image on an ecommerce site—and then see the item rendered three-dimensionally in their living space. Adobe says the true-to-life size precision—and the ability to pull multiple products into the same view—set its AR service apart from others on the market. […]

Adobe Unveils New Augmented Reality Shopping Tool Prototype | Adobe AR-2022

Chang Xiao, the Adobe research scientist who created the tool, said many of the AR services currently on the market provide only rough estimations of the size of the product. Adobe is able to encode dimensions information in its invisible marker code embedded in the photos, which its computer vision algorithms can translate into more precisely sized projections.

Death Valley 3D

Last year I enjoyed creating a 3D dronie during my desert trip with Russell Brown, flying around the Pinnacles outside of Trona:

This year I just returned (hours ago!) from another trip with Russell, this time being joined by his son Davis (who coincidentally is my team’s new UI designer!). On Monday we visited the weird & wonderful International Car Forest of the Last Church, where Davis used his drone plus Metashape to create this 3D model:

And yes, technically neither of these locations is in Death Valley, where drone flying is prohibited. Close enough! ¯\_(ツ)_/¯

Rad scans: Drones & trees

Earlier this week I was amazed to see the 3D scan that Polycam founder Chris Heinrich was able to achieve by flying around LA & capturing ~100 photos of a neighborhood, then generating 3D results via the new Web version of Polycam:

I must try to replicate this myself!

You can take the results for a (literal) spin here, though note that they didn’t load properly on my iPhone.

As you may have seen in Google Earth & elsewhere, scanning & replicating amorphous organic shapes like trees remains really challenging:

It’s therefore all the more amazing to see the incredible results these artists exacting artists are able to deliver when creating free-to-use (!) assets for Unreal Engine:

[Via Michael Klynstra]

Lego 3D: Spaceship Spaceship Spaceship!

Here’s a fun, <60s year-end gift from 3D artist Tomas Kral, made with the help of Adobe Substance 3D:

New 3D GAN spins your head right ’round, baby

SYNTHESIZE ALL THE CATS!!

This new witchcraftsynthesizes not only high-resolution, multi-view-consistent images in real time, but also produces high-quality 3D geometry.” Plus it makes a literally dizzying array of gatos!

Unsupervised generation of high-quality multi-view-consistent images and 3D shapes using only collections of single-view 2D photographs has been a long-standing challenge. Existing 3D GANs are either compute-intensive or make approximations that are not 3D-consistent; the former limits quality and resolution of the generated images and the latter adversely affects multi-view consistency and shape quality. In this work, we improve the computational efficiency and image quality of 3D GANs without overly relying on these approximations. For this purpose, we introduce an expressive hybrid explicit-implicit network architecture that, together with other design choices, synthesizes not only high-resolution multi-view-consistent images in real time but also produces high-quality 3D geometry. By decoupling feature generation and neural rendering, our framework is able to leverage state-of-the-art 2D CNN generators, such as StyleGAN2, and inherit their efficiency and expressiveness. We demonstrate state-of-the-art 3D-aware synthesis with FFHQ and AFHQ Cats, among other experiments.

Disney Research introduces “Rendering With Style”

The imagineers (are they still called that?) promise a new way to create photorealistic full-head portrait renders from captured data without the need for artist intervention.

Our method begins with traditional face rendering, where the skin is rendered with the desired appearance, expression, viewpoint, and illumination. These skin renders are then projected into the latent space of a pre-trained neural network that can generate arbitrary photo-real face images (StyleGAN2).

The result is a sequence of realistic face images that match the identity and appearance of the 3D character at the skin level, but is completed naturally with synthesized hair, eyes, inner mouth and surroundings.

Mental Canvas enables 3D drawing

10 years ago we put a totally gratuitous (but fun!) 3D view of the layers stack into Photoshop Touch. You couldn’t actually edit in that mode, but people loved seeing their 2D layers with 3D parallax.

More recently apps are endeavoring to turn 2D photos into 3D canvases via depth analysis (see recent Adobe research), object segmentation, etc. That is, of course, an extension of what we had in mind when adding 3D to Photoshop back in 2007 (!)—but depth capture & extrapolation weren’t widely available, and it proved too difficult to shoehorn everything into the PS editing model.

Now Mental Canvas promises to enable some truly deep expressivity:

I do wonder how many people could put it to good use. (Drawing well is hard; drawing well in 3D…?) I Want To Believe… It’ll be cool to see where this goes.

Behind the scenes: Mandalorian & deepfakes

I hadn’t heard of Disney’s Gallery: The Mandalorian, but evidently it revealed more details about the Luke Skywalker scene. In response, according to Screen Rant,

VFX team Corridor Crew took the time to share their thoughts on the show’s process. From what they determined, Hamill was merely on set to provide some reference points for the creative team and the stand-in actor, Max Lloyd-Jones. The Mandalorian used deepfake technology to pull together Hamill’s likeness, and they combed through countless hours of Star Wars footage to find the best expressions.

I found the 6-minute segment pretty entertaining & enlightening. Check it out:

Adobe researchers show off new depth-estimation tech for regular images

I keep meaning to pour one out for my nearly-dead homie, Photoshop 3D (post to follow, maybe). We launched it back in 2007 thinking that widespread depth capture was right around the corner. But “Being early is the same as being wrong,” as Marc Andreessen says, and we were off by a decade (before iPhones started putting depth maps into images).

Now, though, the world is evolving further, and researchers are enabling apps to perceive depth even in traditional 2D images—no special capture required. Check out what my colleagues have been doing together with university collaborators:

[Via]

AR: How the giant Carolina Panther was made

By now you’ve probably seen this big gato bounding around:

https://twitter.com/Panthers/status/1437103615634726916?s=20

I’ve been wondering how it was done (e.g. was it something from Snap, using the landmarker tech that’s enabled things like Game of Thrones dragons to scale the Flatiron Building?). Fortunately the Verge provides some insights:

In short, what’s going on is that an animation of the virtual panther, which was made in Unreal Engine, is being rendered within a live feed of the real world. That means camera operators have to track and follow the animations of the panther in real time as it moves around the stadium, like camera operators would with an actual living animal. To give the panther virtual objects to climb on and interact with, the stadium is also modeled virtually but is invisible.

This tech isn’t baked into an app, meaning you won’t be pointing your phone’s camera in the stadium to get another angle on the panther if you’re attending a game. The animations are intended to air live. In Sunday’s case, the video was broadcast live on the big screens at the stadium.

I look forward to the day when this post is quaint, given how frequently we’re all able to glimpse things like this via AR glasses. I give it 5 years, or maybe closer to 10—but let’s see.

“How video game rocks get made”

Last year I was delighted to help launch ultra-detailed 3D vehicles & environments, rendered in the cloud, right in Google Search:

Although we didn’t get to do so on my watch, I was looking forward to leveraging Unreal’s amazing Quixel library of photo-scanned 3D environmental assets. Here’s a look at how they’re made:

3D: A Rube Goldberg “exquisite corpse”

This fruit of collaborative creation process, all keyed off of a single scene file, is something to be hold, especially when viewed on a phone (where it approximates scrolling through a magical world):

For Dynamic Machines, I challenged 3D artists to guide a chrome ball from point A to point B in the most creative way possible. Nearly 2,000 artists entered, and in this video, the Top 100 renders are featured from an incredible community of 3D artists!

AR: Olympians come to Google search

Last summer my former teammates got all kinds of clever in working around Covid restrictions—and the constraints of physics and 3D capture—to digitize top Olympic athletes performing their signature moves. I wish they’d share the behind-the-scenes footage, as it’s legit fascinating. (Also great: seeing Donald Glover, covered in mocap ping pong balls for the making of Pixel Childish Gambino AR content, sneaking up behind my colleague like some weird-ass phantom. 😝)

Anyway, after so much delay and uncertainty, I’m happy to see those efforts now paying off in the form of 3D/AR search results. Check it out:

https://twitter.com/davidiwanow/status/1419913878222393361?s=20

VFX: An oral history of Terminator 2

One of my favorite flexes while working on Google Photos was to say, “Hey, you remember the liquid-metal guy in Terminator 2? You know who wrote that? This guy,” while pointing to my ex-Adobe teammate John Schlag. I’d continue to go down the list—e.g. “You know who won an Oscar for rigging at DreamWorks? This guy [points at Alex Powell].” I did this largely to illustrate how insane it was to have such a murderer’s row of talent working on whatever small-bore project Photos had in mind. (Sorry, it was a very creatively disappointing time.)

Anyway, John S., along with Michael Natkin (who went on to spend a decade+ making After Effects rock), contributed to this great oral history of the making of Terminator 2. It’s loaded with insights & behind-the-scenes media I’d never seen before. Enjoy!

Adobe joins the new Open 3D Foundation

Back in the 90’s I pleaded with Macromedia to enable a “Flash Interchange Format” that would allow me to combine multiple apps in making great animated content. They paid this no attention, and that’s part of why I joined Adobe & started working on things like integrating After Effects with LiveMotion—a code path that helps connect AE with other apps even two+ decades (!) later.

Point is, I’ve always loved aligning tools in ways that help creators combine apps & reach an audience. While at Google I worked with Adobe folks on 3D data exchange, and now I’m happy to see that Adobe is joining the new Open 3D Foundation, meant to “accelerate developer collaboration on 3D engine development for AAA-games and high-fidelity simulations.”

Amazon… is contributing an updated version of the Amazon Lumberyard game engine as the Open 3D Engine (O3DE), under the permissive Apache 2.0 license. The Open 3D Engine enables developers and content creators to build 3D experiences unencumbered by commercial terms

As for Adobe’s role,

“Adobe is proud to champion the Open 3D Foundation as a founding member. Open source technologies are critical to advance sustainability across 3D industries and beyond. We believe collaborative and agnostic toolsets are the key to not only more healthy and innovative ecosystems but also to furthering the democratization of 3D on a global scale.” — Sebastien Deguy, VP of 3D & Immersive at Adobe.